Noyce Conference Room
Colloquium
Speaker: 
Danielle Bassett (University of Pennsylvania)

This event is by invitation only.

The physics of brain network architecture, function, and control

Abstract: The human brain is a complex organ characterized by a heterogeneous pattern of structural connections that supports long-range functional interactions. New non-invasive imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual humans, paving the way for a better understanding of how the complex network architecture of structural wiring supports our thought processes. While a large body of work now focuses on descriptive statistics to characterize these wiring patterns, a critical open question lies in how the organization of these networks constrains the potential repertoire of brain dynamics. In this talk, I will describe an approach for understanding how perturbations to brain dynamics propagate through complex wiring patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools – from graph theory to network control theory and optimization – I will identify control points in brain networks, characterize trajectories of brain activity states following perturbation to those points, and propose a mechanism for how network control evolves in our brains as we grow from children into adults. Finally, I will describe how these computational tools and approaches can be used to better understand how the brain controls its own dynamics (and we in turn control our own behavior), and also how we can inform stimulation devices to control abnormal brain dynamics, for example in patients with severe epilepsy.

Purpose: 
Research Collaboration
SFI Host: 
Chris Kempes