Hanel, R.,Thurner, S.,Tsallis, C.

We study the robustness of the functionals of probability distributions such as the Renyi and nonadditive S-q entropies, as well as the q-expectation values under small variations of the distributions. We focus on three important types of distribution functions, namely i) continuous bounded, ii) discrete with finite number of states, and iii) discrete with in finite number of states. The physical concept of robustness is contrasted with the mathematically stronger condition of stability and Lesche-stability for functionals. We explicitly demonstrate that, in the case of continuous distributions, once unbounded distributions and those leading to negative entropy are excluded, both Renyi and nonadditive Sq entropies as well as the q-expectation values are robust. For the discrete finite case, the Renyi and nonadditive Sq entropies and the q-expectation values are robust as well. For the infinite discrete case, where both Renyi entropy and q-expectations are known to violate Lesche-stability and stability, respectively, we show that one can nevertheless state conditions which guarantee physical robustness. Copyright (C) EPLA, 2009