Meyer, Alexander D.; Alan Hastings and John L. Largier

Many benthic animals begin life with a planktonic larval stage during which coastal currents may move individuals far from shore. This trait is believed to allow individuals to develop away from nearshore predators and sibling competition, based on the assumption that mortality rates are weaker offshore. However, larvae developing offshore often fail to locate suitable coastal habitats. This results in a trade-off between nearshore mortality and offshore wastage with consequences for larval delivery to adult habitats that have not been fully appreciated. We use a reaction-diffusion model to show that when the nearshore larval mortality rate is high, larval supply can vary more than 10-fold with the offshore mortality rate. If this offshore rate is weak, then larval supply is maximized by an intermediate diffusion rate or larval duration. While a low-diffusivity coastal boundary layer typically improves the larval supply by decreasing wastage, it can also reduce the larval supply by preventing individuals from exploiting low offshore mortality rates. Finally, the cross-shore structure of the mortality rate may influence the alongshore transport of larvae by determining how far offshore they reside prior to settling, and, consequently, the alongshore currents they experience. Our observations contrast with the prior argument that larval supply decreases with diffusivity and larval duration due to wastage, and challenge the widespread decision to omit cross-shore heterogeneity from studies of alongshore movement. Scenarios in which spatial variability in the mortality rate has a large effect on recruitment are important both for understanding the biological consequences of the larval stage and from a modeling perspective.