Ricard Solé, Sergi Valverde
Paper #: 03-11-061
Complex networks are characterized by highly heterogeneous distributions of links, often pervading the presence of key properties such as robustness under node removal. Several correlation measures have been defined in order to characterize the structure of these nets. Here we show that mutual information, noise and joint entropies can be properly defined on a static graph. These measures are computed for a number of real networks and analytically estimated for some simple standard models. It is shown that real networks are clustered in a well-defined domain of the entropy-noise space. By using simulated annealing optimization, it is shown that optimally heterogeneous nets actually cluster around the same narrow domain, suggesting that strong constraints actually operate on the possible universe of complex networks. The evolutionary implications are discussed.