Navarro, R; Ambros, S; Martinez, F; Elena, SF

Understanding how genetic drift, mutation and selection interplay in determining the evolutionary fate of populations is one of the central themes of Evolutionary Biology. Theory predicts that by increasing the number of coexisting beneficial alleles in a population beyond some point does not necessarily translates into an acceleration in the rate of evolution. This diminishing-returns effect of beneficial genetic variability in microbial asexual populations is known as clonal interference. Clonal interference has been shown to operate in experimental populations of animal RNA viruses replicating in cell cultures. Here we carried out experiments to test whether a similar diminishing-returns of population size on the rate of adaptation exists for a plant RNA virus infecting real multicellular hosts. We have performed evolution experiments with tobacco etch pofyvirus in two hosts, the natural and a novel one, at, different, inoculation sizes and estimated the rates of evolution for two phenotypic fitness-related traits. Firstly, we found that evolution proceeds faster in the novel than in the original host. Secondly, results were compatible width a diminishing-returns effect of inoculum size on the rate of evolution for one of the fitness traits, but not for the other, which suggests that selection operates differently on each trait.